1(a). In a neutralisation reaction dilute sulfuric acid, H2SO4, reacts with potassium hydroxide solution, K	OH.
H ₂ SO ₄ + 2KOH √ K ₂ SO ₄ + 2H ₂ O	
Calculate the mass of potassium sulfate, K_2SO_4 , that could be made from 6.54 g of dilute sulfuric acid, F_4	I ₂ SO ₄ .
Give your answer to 3 significant figures.	
Relative atomic mass (A_r): H = 1.0 K = 39.1 O = 16.0 S = 32.1	
Mass of potassium sulfate =	g [4]
(b). The neutralisation reaction between sodium hydroxide solution, NaOH, and dilute hydrochloric acid, makes a salt and water.	HCI,
Write the balanced symbol equation for the reaction.	
	[2]
2. Complete the balanced symbol equation for the complete combustion of methane.	
$CH_4 + 2 \to CO_2 + \; H_2O$	
	[2]
3. What is the balanced equation for the reaction of sodium with oxygen?	
A Na + O \rightarrow NaO	
$\textbf{B} \qquad \text{Na} + \text{O}_2 \rightarrow \text{NaO}_2$	
C $4Na + O_2 \rightarrow 2Na_2O$ D $Na_2 + 2O \rightarrow 2NaO$	
Your answer	F43
Your ariswer	[1]
4(a). A student investigates the reaction between sodium carbonate, Na ₂ CO ₃ , and sulfuric acid, H ₂ SO ₄ .	
Sodium sulfate, water and carbon dioxide are made.	
i. Complete the balanced symbol equation for the reaction.	
$Na_2CO_3(s) + H_2SO_4(aq) \rightarrow(aq) + H_2O(I) + CO_2(g)$	[1]
ii. Sulfuric acid has the state symbol (aq).	
What does (aq) mean?	
	[1]

iii. One of the products is a gas. The student wants to collect the gas formed.

Complete the diagram to show how they can collect and measure the volume of gas.

(b). The table shows the student's results.

Time (minutes)	Volume of gas collected (cm³)
0	0.0
2	2.0
4	3.5
6	4.4
8	4.9
10	5.1
12	5.1
14	5.1

[2]

i. Plot the results from the table on the graph.

Six points have already been plotted.

ii. Draw a curve of best fit.

[1]

[1]

iii. Use the graph to estimate the volume of gas that has been collected at 7.5 minutes.

Volume of gas collected = cm³ [1]

iv. The student collects 5.1 cm³ of gas.

The student wants to collect more gas.

How does the student change the experiment so that more gas is collected?

Tick (✓) one box.

Use a larger conical flask	
Use less sodium carbonate	
Use less sulfuric acid	
Use more sulfuric acid	

5. What is the balanced symbol equation for the reaction of methane with oxygen?

- $A \qquad CH_4 + O_2 \rightarrow CO_2 + H_2O$
- $\mathbf{B} \qquad \mathsf{CH_4} + \mathsf{O_2} \to \mathsf{CO_2} + 2\mathsf{H_2O}$
- **C** $CH_4 + 2O_2 \rightarrow CO_2 + H_2O$
- **D** $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

[1]

6. 11.0 g of aluminium reacts with 43.4 g of chlorine to make 54.4 g of aluminium chloride. $2AI + 3CI_2 \rightarrow 2AICI_3$

How much **aluminium** is required to make 217.6 g of aluminium chloride?

- **A** 22.0 g
- **B** 44.0 g
- **C** 86.8 g
- **D** 173.6 g

	[1]

7. The melting point of magnesium chloride is 714 °C.

Which state symbols are used for magnesium chloride at these temperatures?

	State symbol at 25 °C	State symbol at 110 °C
Α	g	g
В	s	s
С	s	g
D	g	S

Your answer		[1]
-------------	--	-----

- 8. Why can the mass of a reaction in an open conical flask decrease?
- **A** One of the products is a gas.
- **B** One of the products is a solid.
- C One of the reactants is a liquid.
- **D** One of the reactants is a solid.

Your answer		[1]
-------------	--	-----

Give your answer to 1 decimal place.

9. 63	.5 g of copper reacts to make 134.5 g of copper chloride, $CuCI_2$.	
Cu+	$CI_2 \rightarrow CuCI_2$	
How	much copper chloride will be made from 0.635 g of copper?	
A B C D	0.01345 g 0.1345 g 1.345 g 13.45 g	
Your	answer	[1]
10 . S	odium fluoride has the formula NaF. The formula of the sodium ion is Na ⁺ .	
What	t is the formula of the fluoride ion?	
A B C D	F ⁺ F ⁻ F ²⁻	
Your	answer	[1]
11. Ir	on reacts with dilute sulfuric acid, H ₂ SO ₄ .	
Iron s	sulfate, FeSO ₄ , and hydrogen gas, H ₂ , are made.	
i.	Write the balanced symbol equation for this reaction.	[1]
ii.	A student reacts 2.8 g of iron with dilute sulfuric acid.	
	The student makes 5.4 g of iron sulfate.	
	They predicted that they should have made 7.6 g of iron sulfate.	
	Calculate their percentage yield.	

[1]

What is the name of the salt made?

i.

ii. The diagram shows the apparatus the student uses.

How can the student tell when the reaction is complete?

______[1]

iii. The student records the mass on the balance every 2 minutes for 12 minutes.

The student's results are shown in the table.

Time (minutes)	Mass (g)
0	154.2
2	150.5
4	148.2
6	146.5
8	145.3
10	144.0
12	142.9

The mass before the reaction starts is 154.2 g.

How much carbon dioxide gas is made after 8 minutes?

Mass of carbon dioxide = g [2]

16. Chlorine reacts with aluminium to form aluminium chloride.

The formula for aluminium chloride is A/ C/₃.

•	The symbol for a chloride ion is C/	
Wh	at is the symbol for an aluminium ion?	
17.	The symbol for a calcium ion is Ca^{2+} . The symbol for an iodate ion is IO_3^- .	[1]
	at is the formula for calcium iodate?	
A B C D	$CaIO_3$ $CaIO_{32}$ $Ca(IO_3)_2$ Ca_2IO_3	
Yo	ur answer	[1]
18.	Which state symbol is used for liquids?	
A B C D	(aq) (g) (l) (s)	
Yo	ur answer	[1]

END OF QUESTION PAPER